
Download free eBooks at bookboon.com

Perl for Beginners

101

Formatted printing

18 Formatted printing

Up to now, our print statements have been simple instructions to print a single string, the only
complication that we have seen so far being the possibility of including variable names within the string
which are replaced by their values when the print statement is reached:

$total = 14726;
print "The total is: $total\n";

The total is: 14726

Often, though, we need more control than this over print formatting, so that complex data sets can be laid
out in a way which looks clear to human readers.

This is achieved using the keyword printf (“print formatted”) rather than print. A printf
statement takes a list of arguments; the first element of the list is a string to be printed (we’ll call this the
print string), subsequent elements identify items to be incorporated into the print string, and the print
string contains instructions specifying how to format those other items for inclusion in itself. A formatting
instruction is a sequence beginning with the % sign, ending with a letter identifying the type of item to be
displayed, and (often) having intermediate symbols which “fine-tune” the display format.34

For example, the type-letter for integers (whole numbers) is d; and a number between the % sign and
the type-letter specifies a minimum field width. So, rather than writing print "The total is:
$total\n" above, we could instead have written:

printf("The total is:%6d\n", $total);

Why might one prefer to do that? Well, for instance, suppose that this line occurs within a loop (so that
successive totals will be written out), and suppose that the value of $total varies considerably from
pass to pass through the loop; then the lines printed out by our printf statement will look like this:

The total is: 14726
The total is: 3
The total is: 279

The symbol %6d only says that the minimum space to be occupied by the value of $total is six
characters, so if $total should ever get into the millions then the numbers will no longer be neatly
aligned with units, tens, etc. one below another. (Normally one would avoid this problem by picking a
minimum field width that provides for more places than one ever expects to see.) But, with the print
statement we showed earlier, the numbers will never line up; the display would look like this:

The total is: 14726
The total is: 3
The total is: 279

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

102

Formatted printing

In some circumstances, that might be acceptable; but, in others, it could be a thorough nuisance.

Apart from d, the “type-letters” most commonly useful are f for floating-point numbers (decimals, in
ordinary English); e for floating-point numbers expressed in scientific notation (e.g. 0.000532 in
scientific notation is 5.32e-04, meaning 5.32 10–4), and s for strings.

The most useful intervening symbols, apart from a number standing for minimum field width, are:

. followed by a number, for “precision”
0 use zeros rather than spaces to the left of the number to pad it out to the minimum field width
- left-justify rather than right-justify the number within the field

In the case of a floating-point number, “precision” refers to the number of decimal places shown. Thus:

$pi = 3.14159265358979;
printf("%07.3f\n", $pi);

003.142

The format symbol %07.3f means “print the value to three decimal places and taking up seven
character spaces altogether, padding with zeros at the left to achieve that”.

Notice that when specifying a limited number of decimal places, we do not need to worry about rounding:
Perl does that for us automatically. So in this case 5 in the fourth position after the decimal point correctly
causes the preceding 1 to be rounded up to 2.

In the case of strings, “precision” refers to the maximum length to be printed:

$surname1 = "Smith";
$surname2 = "Cumberbatch";
printf("%.10s\n%.10s\n", $surname1, $surname2);

Smith
Cumberbatc

Perl defines many further “type-letters” and several other intervening symbols, but those are for more
specialized purposes.

The items following the print string in a printf statement will not necessarily be things that already
have names in the program. They may be (and in practice often will be) values that are calculated for the
purpose of the printf statement. (The same is true for the simple print function. Earlier, to keep
things simple, we never carried out a calculation within a print statement, but that is a quite normal
thing to do.)

Consider, for instance, our expanded table of county data, Figure 2 above, which via code-chunk (31) we
have read into our program as an array of hashes, so that for instance $counties[1]{acreage}
gives the value 463830. Perhaps we would like to know the (average) population densities, i.e. people
per acre, of the various counties. We could extract those figures like this:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

103

Formatted printing

(32)

1 for ($j = 0; $j < @counties; ++$j)
2 {
3 printf("Pop. density of %s is %.3f people per acre\n",
 $counties[$j]{name},
 $counties[$j]{pop}/$counties[$j]{acreage});
4 }

Pop. density of Bedfordshire is 1.403 people per acre
Pop. density of Berkshire is 1.262 people per acre
Pop. density of Buckinghamshire is 1.135 people per acre

 ⋮

The print string in the printf statement, 32.3, contains two formatting instructions, %s and %.3f – the
latter asks for a floating-point value to be printed to three places of decimals. The expression which provides a
string value for %s is a simple hash element, $counties[$county]{name}; but the following
expression, which provides a value for %.3f, is a division of one hash element by another hash element.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Perl for Beginners

104

Formatted printing

(As a reminder: in 32.1 it is fine to use the array-name @counties in a scalar context, i.e. following <,
to specify the number of rows in @counties: that array really does have one row per county. But what we
cannot do is replace the for($j = 0 …) construction of 32.1 with a foreach construction which
looks at each hash in @counties in turn, because what occur in the rows of @counties are not really
hashes but “references to hashes”, and we have not learned how to work with references.)

A final point about printf is that printing to the screen is only its common, default use. As with
print, we can also use printf to add material to a file. Thus, if OUTFILE is the filehandle for
some file that we have opened for appending (>>), then

printf(OUTFILE "%.10s\n", "Cumberbatch");

will add the line

Cumberbatc

to the end of that file. You might ask “How does printf know that in this case OUTFILE is the
destination file and the print string is the item following that, while in other cases the element immediately
following printf was the print string? Does this depend on OUTFILE not being the name of a
string?” No, that is not it; the answer is that the filehandle and the print string are not separated by a
comma. If the first item after printf has a comma following it, it is the string to be printed and the
print destination is STDOUT, the “standard output destination” – in practice, the screen. If there is no
comma, then that item is the destination file. (In the printf statement above, if we added a comma
after OUTFILE we would get an error message, since OUTFILE is in fact a filehandle rather than a
string. The important point is that it is presence versus absence of comma which determines how Perl tries
to interpret the first item within the brackets.)

To pull everything together, here is a complete program that reads in the countyDataPlus information,
stores it in an array of hashes, uses it to calculate the population densities, and saves county names and
population densities to an external file. I have included some comments, to make it easier for us to pick up
the threads when we come back to the program some time after it was first written. (Adding comments to
one’s code feels like a chore to most programmers – but trying to recall how uncommented code works
usually turns out to be a considerably greater chore!)

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

105

Formatted printing

(33)

1 open(INFILE, "<../data/pops/countyDataPlus.txt") or
 die ("can\'t open countyDataPlus.txt");
2 $i = 0; #initialize index for rows of @counties
3 while ($line = <INFILE>)
4 {
5 chomp($line);
6 $line =~ s/^\s*(\S.*\S)\s*$/$1/;
7 #remove leading/trailing whitespace
8 @items = split(/\s*\|\s*/, $line);
9 #split on "|" possibly with whitespace adjacent
10 ($name, $population, $acreage, $rateable_value) = @items;
11 $name = despace($name);
12 $counties[$i]{name} = $name;
13 $counties[$i]{pop} = $population;
14 $counties[$i]{acreage} = $acreage;
15 $counties[$i]{rValue} = $rateable_value;
16 ++$i;
17 }
18 close(INFILE);
19 open(OUTFILE, ">../data/pops/densities.txt") or

die ("can\'t open output file");
20 for ($j = 0; $j < @counties; ++$j)
21 {
22 printf(OUTFILE "%s\t%.3f\n",
 $counties[$j]{name},
 $counties[$j]{pop}/$counties[$j]{acreage});
23 }
24 close(OUTFILE);

25 sub despace
26 #replaces name-internal whitespace with single "_"
27 {
28 my $p = shift(@_);
29 $p = join("_", split(/\s+/, $p));
30 return($p);
31 }

If (33) is saved under the name countyCalcs.pl, then the command

perl -w countyCalcs.pl

will create a file densities.txt which will look like this:

Bedfordshire 1.403
Berkshire 1.262

⋮

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

106

Formatted printing

In real life, if all we wanted to do was to discover the population densities, (33) is probably not the
program we would write to do that. Setting up an array of hashes containing various kinds of information
for each county is a cumbersome procedure if all we are ever going to do is use part of the information for
a single calculation, ignoring some of the data (the rateable values) altogether. It would be quicker to do
the population-density calculation directly as the individual lines are read in from the countyDataPlus file,
and never bother about setting up an array of hashes. Realistically, (33) is more plausible as an early stage
of a program which will later be enlarged to process the county data in other ways, perhaps using
information from additional input files.

But (33) illustrates, in a small way, everything that real-life programs achieve. It reads data in, processes
them, creates data structures to hold them, calculates with them, and saves the results of the processing
and calculation to permanent storage. Writing code to achieve these things is what computer programming
is about.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Perl for Beginners

107

Built-in variables

19 Built-in variables

In chapter 16, we saw that the symbol @_ is a special “built-in variable”: whenever our program calls a
user-defined function, say the function despace() which we defined in that chapter, @_ stands for
the list of arguments it is called with. Our program might say:

$stringA = "a string of letters";
print(despace($stringA), "\n");

a_string_of_letters

– in this case, while the code headed sub despace is being interpreted by the machine, the symbol
@_ (which is used within that code) stands for the one-element array whose single element is
$stringA.

Perl has numerous built-in variables – a few others are also arrays, most are scalars. Let’s look at some of
the most useful of them.

Apart from @_, the most important built-in array variable is @ARGV, which does a job similar to @_ at
the level of the command line – the line addressed to your system prompt which tells it to run a Perl
program. Our very first program, (1), was a program to add two and two and print out their sum. For a first
program that was fine, but in real life it would obviously be more satisfying to have a program which
added and printed the sum of any pair of numbers we choose to give it. Here is a program to do that; let’s
name it printsum.pl:

(34)

1 $a = $ARGV[0];
2 $b = $ARGV[1];
3 print $a + $b, "\n";

If we have created a file printsum.pl containing (34), we can use it by placing the arguments (that is,
for this program, the numbers to be summed) after the program name (without commas):

perl -w printsum.pl 2.3 7.9

10.2

The array of arguments to printsum.pl is called @ARGV, so on this occasion $ARGV[0] is 2.3
and $ARGV[1] is 7.9.35

Better still, we can generalize the program by accepting any number of values to be summed – let’s call
the revised program printsumm.pl (“m” for “many”):

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

108

Built-in variables

(35)

1 $t = 0;
2 foreach $item (@ARGV)
3 {
4 $t += $item;
5 }
6 print "$t\n";

With printsumm.pl defined, we can write:

perl -w printsumm.pl 5 19 520 4

548

Turning to built-in scalar variables, in fact we have already seen some of these, in chapter 10 on pattern
matching. $1, $2, $3, and so on stand for elements identified by round brackets in the pattern section
of a pattern-match:

$word = "beautiful";
$word =~ /[^aeiou]([aeiou]+)[^aeiou]+([aeiou]+)[^aeiou]/;
finds the 1st 2 vowel-sequences surrounded by non-vowels
print $1, "\n", $2, "\n";

eau
i

Related to these are the built-in variables $&, $`, and $' which, following a pattern-matching
operation on a target string, stand for:

$& the section of the target string which matched the pattern
$` the preceding section of the target string
$' the following section of the target string

Thus:

$word = "beautiful";
$word =~ /eau(..)/;
print $1, "\n";
print $&, "\n";
print $`, "\n";
print $', "\n";

ti
eauti
b
ful

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

109

Built-in variables

The pattern between slashes covers the five characters eauti of $word (remember that . in a
pattern stands for any single character); so $& stands for that five-character substring. The brackets
round .. mean that $1 has the value ti; $` and $' stand for the portions of $word before and
after the segment eauti.

Other built-in scalar variables have nothing to do with pattern matching. For instance, $^T gives an
integer representing the time at which the current program began running (expressed in seconds since the
beginning of the year 1970). This huge value may not sound much use in its own right, but for instance we
can discover how long a system takes to execute some task by comparing $^T with the value returned
by time(), which is a built-in function giving a count of seconds-since-1970 at the moment when the
function call is reached in a program. How long does it take Perl to count to a hundred million? On my
machine, six seconds, as measured by the following program showtime.pl:

(36)

1 for ($i = 0; $i < 100000000; ++$i)
2 {;}
3 print $^T, "\n", time() - $^T, "\n";

perl -w showtime.pl

1277200878
6

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Perl for Beginners

110

Built-in variables

Many built-in scalar variables represent fairly arcane systems-programming concepts, which at this
introductory level we can afford to ignore. The most frequently-used built-in scalar variable of all, $_,
will be passed over briefly here for a different reason. We encountered $_ once, in chapter 12, in
connexion with the map() function (where it is indispensable). But the commonest use of $_ is to
provide idiomatically brief alternatives to Perl constructions that take slightly longer to spell out explicitly.
For seasoned programmers to whom brevity is important, this may be handy, but beginners are better
advised to make their code fully explicit, and hence they should probably avoid using $_. (Actually, even
professional programmers – not to speak of those who have to maintain their code after they have moved
on – are probably better off in the long run making everything explicit at the cost of a few extra keystrokes.
There is a geeky side to Perl which delights in terse obscurity for its own sake, and the symbol $_ is
arguably a symptom of that.)

After I have said that much, the reader will doubtless want me to say something specific about this use of
$_, so I will give one example. We know that foreach is used to access each element of an array in
turn:

(37)

1 @colours = ("blue","green","red","yellow");
2 foreach $colour (@colours)
3 {
4 $capColour = uc($colour);
5 print "$capColour\n";
6 }

BLUE
GREEN
RED
YELLOW

Alternatively, it is permissible to omit $colour after foreach, in which case $_ is understood:

foreach (@colours)
 {
 $capColour = uc($_);
 print "$capColour\n";
 }

gives the same output as (37). The symbol $_ here is like the word it in English: the first version of the
foreach loop was saying something like “for each colour word in the array, change that colour word to
upper case”, the second version abbreviated that to something more like “for whatever is in the array,
change it to upper case”. In English, our speech would quickly become tedious if we spelled everything
out rather than using the ambiguous word it. But then, in English we negotiate our meaning with one
another constantly as we converse, so that ambiguities are eliminated as fast as they arise. In
communicating with computers, real ambiguity and real misunderstandings are all too common and hard
to avoid. Consequently I would recommend that beginners leave $_ alone for a while.

http://bookboon.com/

